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1 Applications

1.1 Estimation of the MF2-GARCH-rw-m model in Matlab for S&P 500 stock returns

Define daily log-returns as yt = µ + σtZt = µ +
√
ht τt Zt, where the Zt are i.i.d. with mean zero, variance

one, and symmetric density. The fourth moment of the Zt is denoted by κ. In the following, we write the de-

meaned returns as rt = yt − µ. The conditional variance is denoted by σ2t and the short- and long-term volatility

components are given by ht and τt. Let y be a (T × 1) vector of daily log-returns.

The short-term volatility component is defined as a unit variance GJR-GARCH(1,1)

ht = (1− φ) +
(
α+ γ1{rt−1<0}

) r2t−1
τt−1

+ βht−1 (1)

and the long-term component is specified as a MEM equation for the conditional expectation of Vt = r2t /ht

(squared deGARCHed returns):

τt = λ0 + λ1V
(m)
t−1 + λ2τt−1, (2)

where

V
(m)
t−1 =

1

m

m∑
j=1

Vt−j =
1

m

m∑
j=1

r2t−j
ht−j

. (3)

The MF2-GARCH can be estimated using the following function from the toolbox in Matlab:

[coeff, qmle_se, p_value_qmle, Z, h, tau, sigma_annual, tau_annual, ...

annual_unconditional_vola, foptions] = mf2_garch_estimation(y, foptions);

The function mf2 garch estimation(y, foptions) prints estimation output for the seven parameters

(µ, α, γ, β, λ0, λ1, λ2)

of the short- and long-term component by maximizing the log-likelihood. The outputs include the coefficient

estimates (coeff), Bollerslev-Wooldridge robust standard errors (qmle se), and p-values (p value qmle).

Moreover, mf2 garch estimation(y, foptions) returns standardized residuals Z, fitted val-

ues for the short (h) and long-term (tau, or annualized tau annual) components, the annualized con-

ditional volatility time series (sigma annual), and the estimate of annualized unconditional volatility

(annual unconditional vola).

For the long-term component, you need to specify m, i.e., the number of days over which V (m)
t is computed.

Choose whether you want to use a fixed value of m or let the optimal m be selected as the one that minimizes the

BIC. The foptions structure contains the researcher’s choice for m. Either specify foptions.choice =

’BIC’ to search over m, or use foptions.choice = ’fix’ together with foptions.m = 63. When

foptions.choice = ’BIC’, the code estimates models for values ofm between 20 and 150 and determines

the optimal m as the one minimizing the BIC (Schwarz, 1978). The code also generates a figure of BIC versus

m. As shown in Figure 1 (see Figure 3 in Conrad and Engle (2025)), the lowest BIC materializes for m = 63 (red

line).
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Figure 1: BIC as a function of m. See Figure 3 in Conrad and Engle (2025).

When computing the likelihood, the first two years of y (i.e., 2 × 252 trading days) are discarded to account

for lags of the squared deGARCHed returns in the long-term component. This allows comparing the BIC of

models with different values of m. You could decrease this, but you need to discard at least 2m values. The

Matlab function uses parameter constraints following Assumption 2 (short-term component) and Assumption 3

(long-term component) of Conrad and Engle (2025). For details on the estimation, see Section A.1.1 in Conrad

and Engle (2025).

The following application replicates the second panel in Table 2 in Conrad and Engle (2025) for the MF2-

GARCH-rw-m. In Conrad and Engle (2025), all models were estimated using OxMetrics. We use daily S&P 500

log-return data from January 1971 to June 2023. For the sub-period 1971–1983, the return data were initially

obtained from the Federal Reserve Bank of St. Louis database. Data from 1983 onwards are from TickData.

%% Import the return data to Matlab (S&P500 returns from 1971-2023)

% Read the data into a table

Returns = readtable('data/SP500_1971_2023_06_30_ret.xlsx');

% Extract the column 'RET_SPX' from the table and store it

y = Returns.RET_SPX;

%% Select the m for the estimation

foptions.choice = 'fix'; % choices: 'BIC' or 'fix' (specify m)

% If foptions.choice = 'fix', please specify the m you choose here:

foptions.m = 63;

% Example A (Estimation) for regression output:

mf2_garch_estimation(y, foptions);
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This yields output in the Matlab command window (example excerpt):

=============== Estimation results MF2-GARCH-rw-m ===============

The optimal m was specified by the user: m = 63

Log-Likelihood Function = -16678.611, BIC = 2.524

Estimated fourth moment of the innovations: kappa = 5.441

Parameter Coefficient Standard Error p-value Significance

____________ _________ ___________ __________ ________

{'mu' } 0.030395 0.0069646 1.2758e-05 ***

{'alpha' } 0.0032236 0.0026327 0.22078

{'gamma' } 0.16169 0.020378 2.2204e-15 ***

{'beta' } 0.83956 0.017385 0 ***

{'lambda_0'} 0.017512 0.0072155 0.015226 **

{'lambda_1'} 0.11183 0.046429 0.016013 **

{'lambda_2'} 0.87014 0.051675 0 ***

Output reports Bollerslev-Wooldridge robust standard errors (see Conrad and

Engle (2025), equation (27)).

Covariance stationarity condition satisfied (see Conrad and Engle (2025),

equation (7)): Gamma_m = 0.778

Annualized unconditional volatility = 16.043

==========================================================

If you additionally want to store the fitted values, specify the output of the function as follows:

[coeff, qmle_se, p_value_qmle, Z, h, tau, sigma_annual, tau_annual, ...

annual_unconditional_vola, foptions] = mf2_garch_estimation(y, foptions);

You can use this output to create figures for estimated conditional and long-term volatilities over the full

sample. Grey shaded areas represent NBER recession periods for the US. The function exports the Figure 2 in the

figures folder.

% Extract the date column (not required for estimation, only for figure)

dates = datetime(Returns.OBS, 'InputFormat', 'MM/dd/yyyy');

% Figure of time series

mf2_garch_time_series(dates, sigma_annual, tau_annual);

Additionally, you can plot the news impact curve for the estimated model. Following Engle and Ng (1993),

we use the NIC to illustrate how the conditional volatility is updated in response to new information. The NIC

is presented in terms of annualized volatilities (see equation (10) in Conrad and Engle (2025)). The following

function provides a figure for the NIC (see Figure 3):

[r, NIC] = mf2_garch_nic(Z, h, tau, foptions, coeff);
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Figure 2: The figure shows the estimated conditional volatility,
√
htτt, (black line) and long-term volatility,

√
τt, (red

line) from the MF2-GARCH-rw-63 model for the daily S&P 500 returns. All quantities are annualized. Gray shaded areas
represent NBER recession periods.

Figure 3: The figure shows the NIC for an MF2-GARCH-rw-m model with m = 63.
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1.2 Forecasting at the end of the sample

First, you need to specify the maximum forecasting horizon using foptions.S, e.g. foptions.S = 250 if

you want to forecast the next 250 days. Next, you can use the forecasting function that provides forecasts for the

(annualized) conditional volatility, the short- and (annualized) long-term component:

[horizon, forecast, an_vola_forecast, h_forecast, tau_forecast,

tau_forecast_annual] = mf2_garch_forecasting(y, Z, h, tau, coeff,

foptions);

You must use the same sample as in the testimation function for the forecasting function. Moreover, the function

displays in the command window the forecasts (from the end of the sample) for the annualized volatility on the

next day, next week (5 days), next month (21 days), next 6 months (126 days), and 12 months (252 days) based

on the estimated parameters.

annualized volatility forecast 1 day: 11.4935

annualized volatility forecast 1 week (5 days): 12.4475

annualized volatility forecast 1 month (21 days): 14.5593

annualized volatility forecast 6 months (126 days): 15.4574

annualized volatility forecast 1 year (252 days): 15.6806

We now want to illustrate out-of-sample forecasting using a figure. The following code yields a figure of the

forecasts of long-term volatility and conditional volatility in the last 50 days of the sample and the forecasts for

the next S days:

mf2_garch_out_of_sample_figure(sigma_annual, an_vola_forecast,

tau_forecast_annual, annual_unconditional_vola, foptions)

1.3 Illustration of Forecasting behavior

Last, we want to illustrate the MF2-GARCH’s out-of-sample forecast performance, as in Figure 5 in Conrad and

Engle (2025). We want to forecast volatility from August 10, 2011 (10249 in dates vector) 120 days into the

future and use the forecasting function:

% Specify the maximum forecasting horizon:

foptions.S = 120;

% Estimation of the MF2-GARCH We want to forecast volatility from August

10, 2011 (10249 in dates vector) 150 days into the future. Specify the

cutoff from where you want to forecast:

foptions.cutoff_date = datetime(2011,8,10);

foptions.cutoff = 10249;

6



% Therefore, we need to reestimate the model using data until August 10,

2011.

[coeff, ˜, ˜, Z, h, tau, ˜, tau_annual, annual_unconditional_vola, foptions

] = mf2_garch_estimation(y(1:foptions.cutoff),foptions);

% Forecasting exercise: This function provides forecasts for the annualized

volatility, h and tau for the next S days from the end of the specified

sample.

[horizon, forecast, an_vola_forecast, h_forecast, tau_forecast,

tau_forecast_annual] = mf2_garch_forecasting(y(1:cutoff), Z, h, tau,

coeff, foptions);

% Illustration of forecasting behaviour as in Figure 5 from Conrad & Engle

(2025):

mf2_garch_illustration_forecasting_figure(sigma_annual, an_vola_forecast,

tau_forecast_annual, annual_unconditional_vola, foptions, dates)

The following figure is saved as ’ForecastIllustration.png’ in the figures folder:

Figure 4: The figure shows the conditional volatility (solid black line) from an MF2-GARCH-rw-63 estimated for S&P 500
returns. From day t = 0 (August 10, 2011, indicated by the black vertical line) onwards, we compute volatility forecasts
(dashed black line). The figure also shows the long-term components (red line) and the forecast of long-term volatility
(dashed red line). All quantities are annualized.

The figure shows the conditional volatility (solid black line) from an MF2-GARCH-rw-mmodel withm = 63

estimated for S&P 500 returns. From August 10, 2011 (indicated by the black vertical line) onwards, we compute
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volatility forecasts (dashed black line) for 120 days in the future. The plot also shows long-term volatility (red

line) and the forecast of long-term volatility (dashed red line). All quantities are annualized. The conditional

volatility as well as the long-term volatility are below the unconditional volatility until there is a jump in volatility

up to a level above 50%, driven by the European sovereign debt crisis and a downgrade of the U.S.’s credit rating

by Standard & Poor’s. In the medium run, the forecast for the conditional volatility converges towards the forecast

of the long-term volatility (dashed red line). In the very long run, the MF2-GARCH forecast will converge towards

the unconditional volatility (blue dashed line).
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